
The Seamstress Library

Hayden Walles∗

August 26, 2015

Copyright c⃝ 2007 Hayden Walles.
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version

published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the

section entitled “GNU Free Documentation License”.

Seamstress is an open source library for image seam carving. Seam carving
is a technique described by Avidan and Shamir [1] for changing the size or shape
of an image without necessarily changing the size or shape of the things in the
image. The best way to explain is with some examples. The images1 in Figures
1 and 2 show how seam carving can be used to resize an image. In a nutshell
seam carving resizes images by taking out the “boring bits”.

This document is a programming guide to the Seamstress library. You don’t
need to read it if you just want to use programs developed using the library.
Sections 1–3 describe seam carving and the general capabilities of Seamstress.
Section 4 is a combined guide and reference to the functionality of the the
library.

To get Seamstress and also Arachne, a program that demonstrates the library
at work, visit the project website at http://seam-carver.sourceforge.net/.

1 A brief overview of seam carving

There are two stages to seam carving. First, the energy of each pixel in the
image is computed. A pixel with high energy is considered important, one with
low energy unimportant. There are lots of ways to determine the energy of a
pixel; at the moment Seamstress uses the rate of intensity change around a pixel
as its energy (see Appendix A for details). So edges end up with high energy
because there is a sharp change in intensity, and large uniform areas end up
with low energy. This energy function seems to work well for a wide range of
images, but future versions of Seamstress will probably allow alternative energy
functions to be selected or provided by the user.

Once each pixel has an energy, we can work out how to shrink the image
by removing pixels with as little energy as possible. Imagine we are making

∗hgwalles@gmail.com
1The example images shown were made available by their owners at flickr (http://www.

flickr.com) with creative commons rights (http://creativecommons.org). The source of
each is identified in the figure captions.

1

http://seam-carver.sourceforge.net/
http://www.flickr.com
http://www.flickr.com
http://creativecommons.org

Figure 1: The image on the right was created by removing seams from the
image on the left. Blue sky remains at the top of the picture, but the
bridge remains the same size. “Bridge” was taken in the Copland Valley on the
West Coast of New Zealand by flickr user Tom@North (http://flickr.com/photos/
tomsen/466989106/).

Figure 2: The image on the right was created by removing seams from the
image on the left. The swans remain the same size and shape but appear closer
together – only the water has been shrunk. “Birds @ Otago Peninsular, New
Zealand” was taken on Otago Peninsula, New Zealand by flickr user timparkinson
(http://flickr.com/photos/timparkinson/263830393/).

2

http://flickr.com/photos/tomsen/466989106/
http://flickr.com/photos/tomsen/466989106/
http://flickr.com/photos/timparkinson/263830393/

an image narrower, as in Figure 2. We could sum the energies of the pixels in
each column, and remove the column with the lowest total. Unfortunately this
distorts the image too much. Instead we work with seams. A vertical seem is a
path through the image from top to bottom, with one pixel on each row, such
that pixels on adjacent rows are no more than one column distant from each
other.

In practice this means a vertical seam is a wiggly line from top to bottom.
There are lots of vertical seams in an image, but some are minimal vertical
seams. The total energy of all the pixels in a minimal vertical seam is the lowest
of any vertical seam in the image. Exactly the same idea in the other direction
leads to a minimal horizontal seam. Seam carving proceeds by identifying a
minimal vertical (or horizontal) seam, and removing it, leaving an image one
pixel narrower (or shorter). This can be repeated as often as desired to produce
an output image of any size.

2 Seam maps

Imagine pulling all of the seams out of an image in a particular direction.
You label all the pixels belonging to the first seam removed “1”, all the pixels
belonging to the second seam removed “2”, and so on. Once you have pulled
all the seams out, you have a seam map[1] in which every pixel is labelled with
the number of the seam it belongs to.

Now an image with m seams removed can be reconstructed by gathering to-
gether only pixels from the original image whose label in the seam map is greater
than m. This is how “real-time” seam carving is performed (the precomputation
of the map only takes a few seconds).

Seamstress provides an easy interface to automatically compute seam maps
for you (see Section 4.4).

3 Dynamic energy

Seamstress also provides a feature that is not discussed in Avidan and Shamir[1],
dynamic energy. For seam carving as discussed above, the energy of each pixel
is computed once, before any seams are removed. But since typical energy
functions take in the context of each pixel, this approach can sometimes lead to
poor results if many seams are removed.

Instead the energy can be recomputed between each seam removal, a tech-
nique I call dynamic energy. At first this may sound impractical, since the
Seamstress energy function depends on convolution and is computationally ex-
pensive. However Seamstress takes advantage of the local nature of seam carving
to only recompute the energy of pixels affected by each seam removal. Using
dynamic energy is slower than using computing the energy only once, but only
by about a factor of two.

In many cases dynamic energy provides better results.

3

4 The interfaces provided by Seamstress

Seamstress provides two interfaces for identifying seams in an image, as well as
an way to manually protect and expose pixels of an image and a way to create
a seam map from an image. The Unpicker seam interface carves seams only
in one direction (only vertically, or horizontally) while the Unweaver interface
allows arbitrary carving in both directions.

The reason two seam carvers are provided is that optimisation is possible
when seam carving is in only one direction. Also, as Seamstress is currently
implemented, true horizontal seam carving is much slower than vertical carving.
Unpicker gets around this by performing horizontal seam carving as vertical
seam carving on a transposed version of the input (that is, a version that is
rotated 90 degrees and flipped).

The chief differences between the two interfaces are:

• The Unweaver interface allows arbitrary sequences of horizontal and ver-
tical seams to be removed, the Unpicker interface allows only vertical or
only horizontal seam removals.

• The Unpicker interface allows dynamic energy to be used, the Unweaver
interface does not.

• Only Unpickers may be used to create seam maps.

The strategy required to use both is similar.

1. Create an unpicker or unweaver the same size as the image you want to
carve.

2. Initialise the unpicker or unweaver with the image data.

3. Compute the energy.

4. Remove seams, either directly or via the Map interface.

5. Perhaps obtain further information about the seam carved image (deter-
mine the size or transform coordinates).

6. Delete the unpicker or unweaver.

4.1 The Unweaver interface

This is the most general interface. It allows you to remove horizontal and
vertical seams from an image, but horizontal seam removal is much slower than
vertical seam removal. It does currently support dynamic energy computation
(see Section 3).

4.1.1 Creating an unweaver

SEAM UNWEAVER *seamstressNewUnweaver(int actualwidth, int

actualheight,int energyfunc,int dynamicenergy,int *error);

Creates a new Unweaver object.

actualwidth The width of the image you will be carving.

4

actualheight The height of the image you will be carving.

energyfunc Reserved for future development. This should always be zero at
present.

dynamicenergy Reserved for future development. This should always be
zero at present.

error Pointer to an integer in which an error code will be deposited, or NULL
if no error code is desired.

The result, if successful, is a pointer to a new Unweaver object ready to be
initialised with the image data. If unsuccessful, NULL will be returned, along
with an appropriate error code if error is not NULL.

4.1.2 Initialising an unweaver

void unweaverSetRowRGB24(SEAM UNWEAVER *pic, int row, unsigned

char *pixels);

void unweaverSetRowRGB32(SEAM UNWEAVER *pic, int row, unsigned

char *pixels);

Initialises one row of an unweaver’s image data. The unweaverSetRowRGB24
function accepts byte aligned RGB triplets. The unweaverSetRowRGB32
function accepts 32 bit words containing RGB bytes in the least significant
bits, and ignores the high byte of each word. You should feed the entire input
image into the unweaver immediately after creating it and before you compute
the energy.

pic Pointer to the unweaver.

row the zero-based row number to set.

pixels pointer to the pixel data (aligned as described above) for the row.

4.1.3 Deleting an unweaver

int unweaverDelete(SEAM UNWEAVER *weaver);

Frees all the memory associated with an unweaver. Use when you are finished.

weaver Pointer to the unweaver to delete.

4.1.4 Computing the energy

int unweaverComputeEnergy(SEAM UNWEAVER *pic,SEAM MARKS

*marks,void (*updater)(int done,int of,void *user),void *user,int

*error);

Computes the energy of an unweaver. Call this after the image data has been
set, but before any seams are removed.

pic Pointer to the unweaver whose energy is to be computed.

marks Optional pointer to a Marks object whose annotations will be used to
help compute the energy. This can be NULL if there are no manual
marks to consider. See section 4.3 for details.

5

updater Optional pointer to a function that will be called from time to time
as the computation proceeds and can be used to update a user interface
with progress details. This can be NULL if no updater is desired. See
section 4.5 for details.

user Pointer to user data that is passed to the updater function if one is
provided.

error Pointer to an integer in which an error code will be deposited, or NULL
if no error code is desired.

If successful nonzero is returned. If unsuccessful zero is returned, along with
an appropriate error code if error is not NULL.

4.1.5 Seam carving

int unweaverNextVertical(SEAM UNWEAVER *pic, int *seam,int

*error);

int unweaverNextHorizontal(SEAM UNWEAVER *pic, int *seam,int

*error);

These remove a single vertical seam or a single horizontal seam, respectively.
Once a seam is removed it cannot be inserted again.

pic Pointer to the unweaver to remove a seam from.

seam A pointer to a buffer long enough to hold the index of the pixel
removed on each row or column of the seam. For example, if you are
removing a vertical seam from an unweaver currently measuring
400× 500 pixels, this buffer needs to have room for at least 500 integers.
You can determine the exact size needed using the unweaverCurrentSize
function, but in many cases this will be unnecessary. The length of the
buffer needed will never exceed the original height (for a vertical seam)
or width (for a horizontal seam), so it is often possible to allocate the
buffer once and reuse for each seam removed.

The nth value returned in this buffer indicate the column (for a vertical
seam) or row (for a horizontal seam) of the pixel removed on the nth row
or column. These coordinates are relative to the image as it would be if it
had been carved to the state reached before the call. They are not relative
to the original image. This is a difference from the Unpicker interface.

error Pointer to an integer in which an error code will be deposited, or NULL
if no error code is desired.

If successful, nonzero will be returned and the buffer pointed to by seam will
be filled. If unsuccessful, zero will be returned, along with an appropriate error
code if error is not NULL.

4.1.6 Obtaining the current size

void unweaverCurrentSize(SEAM UNWEAVER *weaver, int *widthptr,int

*heightptr);

6

Returns the current size of the specified unweaver. The current size is the size
the input image would have reached after the sequence of horizontal and
vertical seam removals already performed via unweaverNextHorizontal and
unweaverNextVertical.

weaver Pointer to the unweaver whose size is desired.

widthptr A pointer to an integer that will receive the current width.

heightptr A pointer to an integer that will receive the current height.

4.1.7 Transforming coordinates

int unweaverTransformToOriginal(SEAM UNWEAVER *weaver, int *xptr,

int *yptr);

This function is useful when reconstructing the image that would result from
the seam removals performed so far. It translates coordinates in the specified
unweaver to coordinates in the original image. Put another way, it takes the
coordinates of a pixel in the seam-carved image, and returns the coordinates of
that pixel in the original image. So to reconstruct the seam-carved image, all a
program need do is iterate over the width and height of the output, translating
each position to the corresponding position in the input, where the colour data
will be found for that pixel.
For many applications the actual seams removed (as returned in the buffers
passed to unweaverNextVertical and unweaverNextHorizontal) can be ignored,
and this function used to determine the result of the seam carving.

weaver Pointer to the unweaver to use.

xptr Pointer to the x coordinate to transform.

yptr Pointer to the y coordinate to transform.

Returns nonzero if the transformation was completed successfully. Returns
zero if the coordinates were out of range of the unweaver’s current size.

4.2 The Unpicker interface

The Unpicker interface lets you remove either horizontal or vertical seams
from an image, but not both. If you want to remove seams in both directions
arbitrarily, use the Unweaver interface (Section 4.1).

4.2.1 Creating an unpicker

SEAM UNPICKER *seamstressNewUnpicker(int actualwidth, int

actualheight,int direction,int energyfunc,int dynamicenergy,int

*error);

Creates a new Unpicker object.

actualwidth The width of the image you will be carving.

actualheight The height of the image you will be carving.

7

direction The direction seams will be carved in. Zero indicates only vertical
seams will be removed, one indicates only horizontal seams will be
removed.

energyfunc Reserved for future development. This should always be zero at
present.

dynamicenergy If nonzero then the energy will be recomputed after each
seam is removed. See Section 3 for details.

error Pointer to an integer in which an error code will be deposited, or NULL
if no error code is desired.

The result, if successful, is a pointer to a new Unpicker object ready to be
initialised with the image data. If unsuccessful, NULL will be returned, along
with an appropriate error code if error is not NULL.

4.2.2 Initialising an unpicker

void unpickerSetRowRGB24(SEAM UNPICKER *pic, int row, unsigned

char *pixels);

void unpickerSetRowRGB32(SEAM UNPICKER *pic, int row, unsigned

char *pixels);

Initialises one row of an unpicker’s image data. The unpickerSetRowRGB24
function accepts byte aligned RGB triplets. The unpickerSetRowRGB32
function accepts 32 bit words containing RGB bytes in the least significant
bits, and ignores the high byte of each word. You should feed the entire input
image into the unpicker immediately after creating it and before you compute
the energy.

pic Pointer to the unpicker.

row the zero-based row number to set.

pixels pointer to the pixel data (aligned as described above) for the row.

4.2.3 Deleting an unpicker

int unpickerDelete(SEAM UNPICKER *picker);

Frees all the memory associated with an unpicker. Use when you are finished.

picker Pointer to the unpicker to delete.

4.2.4 Computing the energy

int unpickerComputeEnergy(SEAM UNPICKER *pic,SEAM MARKS

*marks,void (*updater)(int done,int of,void *user),void *user,int

*error);

Computes the energy of an unpicker. Call this after the image data has been
set, but before any seams are removed.

pic Pointer to the unpicker whose energy is to be computed.

8

marks Optional pointer to a Marks object whose annotations will be used to
help compute the energy. This can be NULL if there are no manual
marks to consider. See section 4.3 for details. Note that if the unpicker
is using dynamic energy that the Marks object must persist until all
desired seams have been removed.

updater Optional pointer to a function that will be called from time to time
as the computation proceeds and can be used to update a user interface
with progress details. This can be NULL if no updater is desired. See
section 4.5 for details.

user Pointer to user data that is passed to the updater function if one is
provided.

error Pointer to an integer in which an error code will be deposited, or NULL
if no error code is desired.

If successful nonzero is returned. If unsuccessful zero is returned, along with
an appropriate error code if error is not NULL.

4.2.5 Seam carving

int unpickerNextSeam(SEAM UNPICKER *pic, int *seam,int

translate,int *error);

Removes a single seam from an unpicker.

pic Pointer to the unpicker to remove a seam from.

seam A pointer to a buffer long enough to hold the index of the pixel
removed on each row or column of the seam. For example, if you are
removing a vertical seam from an unpicker 500 pixels high, this buffer
needs to have room for at least 500 integers. The length of the buffer
needed will always be the original height (for a vertical seam) or width
(for a horizontal seam), so it is often possible to allocate the buffer once
and reuse for each seam removed.

The nth value in the buffer indicates the column (for a vertical seam) or
row (for a horizontal seam) of the pixel removed on the nth row or
column. The precise interpretation depends on the value of the translate
parameter. If this is zero then these coordinates are relative to the image
as it would be if it had been carved to the state reached before the call. If
it is nonzero they are relative to the original image.

translate A flag that determines whether the returned coordinates will be
relative to the current or original image. See the description of the seam
parameter for details.

error Pointer to an integer in which an error code will be deposited, or NULL
if no error code is desired.

If successful, nonzero will be returned and the buffer pointed to by seam will
be filled. If unsuccessful, zero will be returned, along with an appropriate error
code if error is not NULL.

9

4.2.6 Obtaining the current size

void unpickerCurrentSize(SEAM UNPICKER *picker, int *widthptr,int

*heightptr);

Returns the current size of the specified unpicker. The current size is the size
the input image would have reached after the sequence of seam removals
already performed via unpickerNextSeam.

picker Pointer to the unpicker whose size is desired.

widthptr A pointer to an integer that will receive the current width.

heightptr A pointer to an integer that will receive the current height.

4.2.7 Transforming coordinates

int unpickerTransformToOriginal(SEAM UNPICKER *picker, int *xptr,

int *yptr);

This function is useful when reconstructing the image that would result from
the seam removals performed so far. It translates coordinates in the current
unpicker to coordinates in the original image. Put another way, it takes the
coordinates of a pixel in the seam-carved image, and returns the coordinates of
that pixel in the original image. So to reconstruct the seam-carved image, all a
program need do is iterate over the width and height of the output, translating
each position to the corresponding position in the input, where the colour data
will be found for that pixel.
For some applications the actual seams removed (as returned in the buffers
passed to unpickerNextSeam) can be ignored, and this function used to
determine the result of the seam carving.

picker Pointer to the unpicker to use.

xptr Pointer to the x coordinate to transform.

yptr Pointer to the y coordinate to transform.

Returns nonzero if the transformation was completed successfully. Returns
zero if the coordinates were out of range of the unpicker’s current size.

4.3 The Marks interface

The Marks interface allows the user to annotate locations in an image so that
some parts are protected from or exposed to seam removal, overriding the
automatic energy computation. This is done by setting the energy of pixels in
protected regions to the maximum energy and that of pixels in exposed regions
to zero energy. Seam removal is thus encouraged to remove exposed pixels and
preserve protected ones. Marks objects can be passed to the Unweaver and
Unpicker energy computing functions (See Sections 4.1.4 and 4.2.4
respectively)..

10

4.3.1 Creating a Marks object

SEAM MARKS *seamstressNewMarks(int width, int height,int *error);

Creates a new Marks object.

width The width of the image the new Marks object will be used with. This
must be the same as the original image’s width.

height The height of the image the new Marks object will be used with. This
must be the same as the original image’s height.

error Pointer to an integer in which an error code will be deposited, or NULL
if no error code is desired.

If successful, a pointer to a new blank Marks object will be returned. If
unsuccessful, zero will be returned, along with an appropriate error code if
error is not NULL.

4.3.2 Interpreting annotations

Annotations at each pixel should be interpreted as specified in the following
table.
Value Interpretation

0 The automatic energy should stand.
1 Protect the pixel by setting its energy to the maximum value.
2 Expose the pixel by setting its energy to zero.

4.3.3 Adding annotations

void setMark(SEAM MARKS *marks,int row,int col,int type);

int marksAnnotate(SEAM MARKS *marks, int l, int t, int r, int

b,int type);

Annotates a pixel or a rectangular region of the Marks object.
The arguments for the setMark macro are as follows.

marks Pointer to the Marks object to annotate.

row Row of the pixel to annotate.

col Column of the pixel to annotate.

type Indicates the type of annotation to make. See Section 4.3.2 for the
encoding.

The arguments for the marksAnnotate function are as follows.

marks Pointer to the Marks object to annotate.

l x coordinate of the left side of the rectangle.

t y coordinate of the top side of the rectangle.

r x coordinate of the right side of the rectangle.

b y coordinate of the bottom side of the rectangle.

11

type Indicates the type of annotation to make. See Section 4.3.2 for the
encoding.

The function always returns one.

4.3.4 Reading annotations

int getMark(SEAM MARKS *marks,int row,int col);

Reads back any annotation for the specified pixel. See Section 4.3.2 for the
encoding.

4.3.5 Deleting a Marks object

void marksDelete(SEAM MARKS *marks);

Deletes a Marks object, freeing all associated memory.

marks Pointer to the Marks object to delete.

4.4 The Map interface

The Map automates the construction of seam maps (see Section 2). During
the construction of a seam map for an image, each pixel in the image is
labelled with the number of the minimal seam to which it belongs. Seam maps
can only be created when seams are removed in a single direction (horizontally
or vertically).

4.4.1 Creating a seam map

SEAM MAP *unpickerMap(SEAM UNPICKER *pic,void (*updater)(int

done,int of,void *user),void *user, int *error);

Creates a new Map object from an Unpicker object.

pic Pointer to the unpicker from which the map should be generated. The
unpicker must be initialised and its energy must have been computed.
No seams can have been removed from it. If the function returns
successfully the unpicker will be exhausted (no seams will be left for
removal). It is not required once the function returns.

updater Optional pointer to a function that will be called from time to time
as the computation proceeds and can be used to update a user interface
with progress details. This can be NULL if no updater is desired. See
section 4.5 for details.

user Pointer to user data that is passed to the updater function if one is
provided.

error Pointer to an integer in which an error code will be deposited, or NULL
if no error code is desired.

The result, if successful, is a pointer to a new Map object. If unsuccessful,
NULL will be returned, along with an appropriate error code if error is not
NULL.

12

4.4.2 Deleting a seam map

void mapDelete(SEAM MAP *map);

Deletes the specified Map object, freeing all memory associated with it.

map Pointer to the Map object to delete.

4.4.3 Reading a seam map

int getMap(SEAM MAP *map,int row,int col);

A macro that returns the seam number of a pixel in the original image.

map Pointer to the Map object to read.

row Row of the pixel in the original image.

col Column of the pixel in the original image.

Returns the 1-based number of the seam that the pixel belongs to.

4.5 Updater functions

Some functions that do a lot of computation take updater call-back functions
that will be called from time to time during the computation to allow the user
to, for example, update an on-screen progress indicator. The arguments of this
function are described below.
void (*updater)(int done,int of,void *user);

done A number indicating how much of the job is complete. The proportion
of the job completed is given by done

of .

of A number to which the done parameter should be compared when judging
completion.

user The pointer to user data passed in to the function that to which the
updater function was also passed.

A Energy function

The energy function currently used by Seamstress is an approximate measure
of the gradient parallel to the x and y axes of a slightly blurred version of the
input image.
If I is the original image, then the energy of that image can be defined as

E(I) = |∂I
′

∂x
|+ |∂I

′

∂y
|

where I is the result of the convolution

I′ = ce
−(x2+y2)

σ2 ∗ I

with σ = 1 and c is a normalizing constant.

13

B GNU Free Documentation License

Version 1.2, November 2002
Copyright c⃝ 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide,
royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”.
You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could
be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding
them.

14

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at most
5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy
that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent
image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

15

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public has
access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

16

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you
from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

17

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example,
statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of
all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the
various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

18

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.
You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users
beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the
original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original
version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”,
or “History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically

19

terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright c⃝ YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free
Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.

20

References

[1] Avidan, Shai and Shamir, Ariel. “Seam Carving for Content-Aware Image
Resizing”. ACM Transactions on Graphics 26 (2007).

21

	A brief overview of seam carving
	Seam maps
	Dynamic energy
	The interfaces provided by Seamstress
	The Unweaver interface
	Creating an unweaver
	Initialising an unweaver
	Deleting an unweaver
	Computing the energy
	Seam carving
	Obtaining the current size
	Transforming coordinates

	The Unpicker interface
	Creating an unpicker
	Initialising an unpicker
	Deleting an unpicker
	Computing the energy
	Seam carving
	Obtaining the current size
	Transforming coordinates

	The Marks interface
	Creating a Marks object
	Interpreting annotations
	Adding annotations
	Reading annotations
	Deleting a Marks object

	The Map interface
	Creating a seam map
	Deleting a seam map
	Reading a seam map

	Updater functions

	Energy function
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

